hypoelliptic polynomial - ορισμός. Τι είναι το hypoelliptic polynomial
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι hypoelliptic polynomial - ορισμός

Hypoelliptic; Analytically hypoelliptic; Hypoelliptic partial differential equation; Hypoellipticity; Analytic hypoelliptic; Elliptic regularity

HOMFLY polynomial         
TWO-VARIABLE KNOT POLYNOMIAL, GENERALIZING THE JONES AND ALEXANDER POLYNOMIALS
HOMFLY(PT) polynomial; HOMFLY; LYMPHTOFU polynomial; HOMFLYPT polynomial; Homfly polynomial; FLYPMOTH polynomial; HOMFLY invariant
In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e.
Polynomial transformation         
TRANSFORMATION OF A POLYNOMIAL INDUCED BY A TRANSFORMATION OF ITS ROOTS
Transforming Polynomials; Transforming polynomials; Polynomial transformations; Depressed polynomial
In mathematics, a polynomial transformation consists of computing the polynomial whose roots are a given function of the roots of a polynomial. Polynomial transformations such as Tschirnhaus transformations are often used to simplify the solution of algebraic equations.
Polynomial hierarchy         
  • PH]], and [[PSPACE]]
HIERARCHY OF COMPLEXITY CLASSES BETWEEN P AND PSPACE
Polynomial time hierarchy; Polynomial-time hierarchy; NP^NP; Sigma2p
In computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP.Arora and Barak, 2009, pp.

Βικιπαίδεια

Hypoelliptic operator

In the theory of partial differential equations, a partial differential operator P {\displaystyle P} defined on an open subset

U R n {\displaystyle U\subset {\mathbb {R} }^{n}}

is called hypoelliptic if for every distribution u {\displaystyle u} defined on an open subset V U {\displaystyle V\subset U} such that P u {\displaystyle Pu} is C {\displaystyle C^{\infty }} (smooth), u {\displaystyle u} must also be C {\displaystyle C^{\infty }} .

If this assertion holds with C {\displaystyle C^{\infty }} replaced by real-analytic, then P {\displaystyle P} is said to be analytically hypoelliptic.

Every elliptic operator with C {\displaystyle C^{\infty }} coefficients is hypoelliptic. In particular, the Laplacian is an example of a hypoelliptic operator (the Laplacian is also analytically hypoelliptic). In addition, the operator for the heat equation ( P ( u ) = u t k Δ u {\displaystyle P(u)=u_{t}-k\,\Delta u\,} )

P = t k Δ x {\displaystyle P=\partial _{t}-k\,\Delta _{x}\,}

(where k > 0 {\displaystyle k>0} ) is hypoelliptic but not elliptic. However, the operator for the wave equation ( P ( u ) = u t t c 2 Δ u {\displaystyle P(u)=u_{tt}-c^{2}\,\Delta u\,} )

P = t 2 c 2 Δ x {\displaystyle P=\partial _{t}^{2}-c^{2}\,\Delta _{x}\,}

(where c 0 {\displaystyle c\neq 0} ) is not hypoelliptic.